Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis.

نویسندگان

  • Isabel Sola
  • José L Moreno
  • Sonia Zúñiga
  • Sara Alonso
  • Luis Enjuanes
چکیده

The generation of subgenomic mRNAs in coronavirus involves a discontinuous mechanism of transcription by which the common leader sequence, derived from the genome 5' terminus, is fused to the 5' end of the mRNA coding sequence (body). Transcription-regulating sequences (TRSs) precede each gene and include a conserved core sequence (CS) surrounded by relatively variable sequences (5' TRS and 3' TRS). Regulation of transcription in coronaviruses has been studied by reverse-genetics analysis of the sequences immediately flanking a unique CS in the Transmissible gastroenteritis virus genome (CS-S2), located inside the S gene, that does not lead to detectable amounts of the corresponding mRNA, in spite of its canonical sequence. The transcriptional inactivity of CS-S2 was genome position independent. The presence of a canonical CS was not sufficient to drive transcription, but subgenomic synthesis requires a minimum base pairing between the leader TRS (TRS-L) and the complement of the body TRS (cTRS-B) provided by the CS and its adjacent nucleotides. A good correlation was observed between the free energy of TRS-L and cTRS-B duplex formation and the levels of subgenomic mRNA S2, demonstrating that base pairing between the leader and body beyond the CS is a determinant regulation factor in coronavirus transcription. In TRS mutants with increasing complementarity between TRS-L and cTRS-B, a tendency to reach a plateau in DeltaG values was observed, suggesting that a more precise definition of the TRS limits might be proposed, specifically that it consists of the central CS and around 4 nucleotides flanking 5' and 3' the CS. Sequences downstream of the CS exert a stronger influence on the template-switching decision according to a model of polymerase strand transfer and template switching during minus-strand synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region.

Nidoviruses produce an extensive 3'-coterminal nested set of subgenomic (sg) mRNAs, which are used to express structural proteins and sometimes accessory proteins. In arteriviruses and coronaviruses, these mRNAs contain a common 5' leader sequence, derived from the genomic 5' end. The joining of the leader sequence to different segments derived from the 3'-proximal part of the genome (mRNA bodi...

متن کامل

Coronavirus transcription mediated by sequences flanking the transcription consensus sequence.

In our studies of murine coronavirus transcription, we continue to use defective interfering (DI) RNAs of mouse hepatitis virus (MHV) in which we insert a transcription consensus sequence in order to mimic subgenomic RNA synthesis from the nondefective genome. Using our subgenomic DI system, we have studied the effects of sequences flanking the MHV transcription consensus sequence on subgenomic...

متن کامل

Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis.

Coronavirus transcription leads to the synthesis of a nested set of mRNAs with a leader sequence derived from the 5' end of the genome. The mRNAs are produced by a discontinuous transcription in which the leader is linked to the mRNA coding sequences. This process is regulated by transcription-regulating sequences (TRSs) preceding each mRNA, including a highly conserved core sequence (CS) with ...

متن کامل

The leader RNA of coronavirus mouse hepatitis virus contains an enhancer-like element for subgenomic mRNA transcription.

While the 5' cis-acting sequence of mouse hepatitis virus (MHV) for genomic RNA replication has been determined in several defective interfering (DI) RNA systems, it remains elusive for subgenomic RNA transcription. Previous studies have shown that the leader RNA in the DI genome significantly enhances the efficiency of DI subgenomic mRNA transcription, indicating that the leader RNA is a cis-a...

متن کامل

Reverse genetic analysis of the transcription regulatory sequence of the coronavirus transmissible gastroenteritis virus.

Coronavirus discontinuous transcription uses a highly conserved sequence (CS) in the joining of leader and body RNAs. Using a full-length infectious construct of transmissable gastroenteritis virus, the present study demonstrates that subgenomic transcription is heavily influenced by upstream flanking sequences and supports a mechanism of transcription attenuation that is regulated in part by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2005